Linux Installation Instructions#
Ryzen AI for Linux supports compiling and running AI models on the AMD Neural Processing Unit (NPU). The current release supports the following model types:
CNN models in INT8 format
CNN models in BF16 format
NLP models (e.g., BERT, encoder-based) in BF16 format
LLMs (NPU-only flow)
Prerequisites#
Dependencies |
Version Requirement |
|---|---|
Ubuntu Distribution |
Ubuntu 24.04 LTS |
Kernel Version |
>= 6.10 |
RAM |
32GB or Higher, 64GB (Recommended) |
Python |
3.10.x |
Use the commands below to install Python 3.10.x along with certain dependencies
sudo apt-get install python3.10
sudo apt-get install python3.10-venv
After installing required Ubuntu distribution and Python version, proceed with NPU drivers installation
Install NPU Drivers#
Download the NPU driver package from Downloads section of Ryzen AI Software Early Access Lounge.
- RyzenAI linux driver package contains
- XRT Package
xrt_202520.2.20.122_24.04-amd64-base.deb
xrt_202520.2.20.122_24.04-amd64-base-dev.deb
xrt_202520.2.20.122_24.04-amd64-npu.deb
- NPU driver package
xrt_plugin.2.20.250102.48.release_24.04-amd64-amdxdna.deb
Install NPU driver package on your machine
sudo apt reinstall --fix-broken -y ./xrt_202520.2.20.122_24.04-amd64-base.deb
sudo apt reinstall --fix-broken -y ./xrt_202520.2.20.122_24.04-amd64-base-dev.deb
sudo apt reinstall --fix-broken -y ./xrt_202520.2.20.122_24.04-amd64-npu.deb
sudo apt reinstall --fix-broken -y ./xrt_plugin.2.20.250102.48.release_24.04-amd64-amdxdna.deb
Set essential Environment variables
export LD_LIBRARY_PATH=/lib/x86_64-linux-gnu:$LD_LIBRARY_PATH
source /opt/xilinx/xrt/setup.sh
Verify your Driver installation
xrt-smi examine
Device(s) Present
|BDF |Name |
|----------------|-----------|
|[0000:c5:00.1] |NPU Strix |
Install Ryzen AI Software#
Download the RyzenAI for Linux package ryzen_ai-1.6.1.tgz from Downloads section of Ryzen AI Software Early Access Lounge.
Navigate to the downloaded path and follow the below steps
mkdir ryzen_ai-1.6.1
cp ryzen_ai-1.6.1.tgz ryzen_ai-1.6.1
cd ryzen_ai-1.6.1
tar -xvzf ryzen_ai-1.6.1.tgz
Install RyzenAI package at your desired target path
./install_ryzen_ai.sh -a yes -p <TARGET-PATH>/venv
source <TARGET-PATH>/venv/bin/activate
This will successfully install RyzenAI and activate the Virtual environment at your target location
# Validate your installation path
echo $RYZEN_AI_INSTALLATION_PATH
Test the Installation#
The RyzenAI software package contains a test script that verifies your correct installation of NPU Drivers.
Navigate to your targeted Virtual Environment created in the previous step
You will observe a subfolder named “quicktest”
cd <TARGET-PATH>/venv/quicktest
python quicktest.py
The quicktest.py script picks up a simple CNN model, compiles it and runs on AMD’s Neural Processing Unit (NPU).
On successful run, you can observe output as shown below.
Setting environment for STX
WARNING: Logging before InitGoogleLogging() is written to STDERR
I20250714 14:46:51.976055 139787 vitisai_compile_model.cpp:1157] Vitis AI EP Load ONNX Model Success
I20250714 14:46:51.976090 139787 vitisai_compile_model.cpp:1158] Graph Input Node Name/Shape (1)
I20250714 14:46:51.976099 139787 vitisai_compile_model.cpp:1162] input : [-1x3x32x32]
I20250714 14:46:51.976104 139787 vitisai_compile_model.cpp:1168] Graph Output Node Name/Shape (1)
I20250714 14:46:51.976109 139787 vitisai_compile_model.cpp:1172] output : [-1x10]
[Vitis AI EP] No. of Operators : NPU 398 VITIS_EP_CPU 2
[Vitis AI EP] No. of Subgraphs : NPU 1 Actually running on NPU 1
Test Passed
Examples, Demos, Tutorials#
RyzenAI-SW demonstrates various demos and examples for Model compilation and deployment on NPUs
- Here are a few examples from our RyzenAI Software Repository
Note
- Before running the above examples -
RyzenAI creates its own Python Virtual Environment to run the examples. You can skip conda environment instruction as they are Windows specific only
Ensure to activate Linux based Python Virtual Environment
source <TARGET-PATH>/venv/bin/activate
Running LLM#
Follow this page to run LLM models on Linux: Running LLM on Linux
Limitations#
Integer CNN Model is only supported through Legacy backend compiler (X1)
Of all supported LLM models, several require a 64GB machine for running.